Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int Immunopharmacol ; 97: 107685, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1188659

ABSTRACT

BACKGROUND: The 2019 Coronavirus (COVID-19) pandemic poses a huge threat internationally; however, the role of the host immune system in the pathogenesis of COVID-19 is not well understood. METHODS: Cytokine and chemokine levels and characterisation of immune cell subsets from 20 COVID-19 cases after hospital admission (17 critically ill and 3 severe patients) and 16 convalescent patients were determined using a multiplex immunoassay and flow cytometry, respectively. RESULTS: IP-10, MCP-1, MIG, IL-6, and IL-10 levels were significantly higher in acute severe/critically ill patients with COVID-19, whereas were normal in patients who had reached convalescence. CD8 T cells in severe and critically ill COVID-19 patients expressed high levels of cytotoxic granules (granzyme B and perforin)and was hyperactivated as evidenced by the high proportions of CD38. Furthermore, the cytotoxic potential of natural killer (NK) cells, and the frequencies of myeloid dendritic cells and plasmacytoid dendritic cells was reduced in patients with severe and critical COVID-19; however, these dysregulations were found to be restored in convalescent phases. CONCLUSION: Thus, elicitation of the hyperactive cytokine-mediated inflammatory response, dysregulation of CD8 T and NK cells, and deficiency of host myeloid and plasmacytoid DCs, may contribute to COVID-19 pathogenesis and provide insights into potential therapeutic targets and strategies.


Subject(s)
COVID-19/blood , COVID-19/immunology , Convalescence , Inflammation/etiology , ADP-ribosyl Cyclase 1/blood , Acute Disease , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , Chemokine CCL2/blood , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Critical Illness , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Dendritic Cells/immunology , Female , Granzymes/metabolism , Humans , Interleukin-10/blood , Interleukin-6/blood , Killer Cells, Natural/enzymology , Killer Cells, Natural/immunology , Male , Membrane Glycoproteins/blood , Middle Aged , Perforin/metabolism
2.
Front Immunol ; 11: 1638, 2020.
Article in English | MEDLINE | ID: covidwho-646900

ABSTRACT

The SARS-CoV2 (COVID-19) pandemic and uncertainties in developing a vaccine have created an urgent need for new therapeutic approaches. A key question is whether it is possible to make rational predictions of new therapies based on the presently available scientific and medical information. In this regard, I have noticed an omission in the present analysis in the literature related to the exploitation of glycogen synthase kinase 3 (GSK-3) as a therapeutic approach. This is based on two key observations, that GSK-3 inhibitors can simultaneously block SARs viral replication, while boosting CD8+ adaptive T-cell and innate natural killer (NK) responses. Firstly, it is already clear that GSK-3 phosphorylation of SARs CoV1 N protein on key serine residues is needed for viral replication such that small molecule inhibitors (SMIs) of GSK-3 can inhibit viral replication. In comparing protein sequences, I show here that the key sites in the N protein of SARs CoV1 N for replication are conserved in SARs CoV2. This strongly suggests that GSK-3 SMIs will also inhibit SARs Cov2 replication. Secondly, we and others have previously documented that GSK-3 SMIs markedly enhance CD8+ cytolytic T-cell (CTL) and NK cell anti-viral effector functions leading to a reduction in both acute and chronic viral infections in mice. My hypothesis is that the repurposing of low-cost inhibitors of GSK-3 such as lithium will limit SARS-CoV2 infections by both reducing viral replication and potentiating the immune response against the virus. To date, there has been no mention of this dual connection between GSK-3 and SARs CoV2 in the literature. To my knowledge, no other drugs exist with the potential to simultaneously target both viral replication and immune response against SARs CoV2.


Subject(s)
Betacoronavirus/physiology , CD8-Positive T-Lymphocytes , Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3 , Immunity, Cellular/drug effects , Killer Cells, Natural , Virus Replication/drug effects , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/immunology , Humans , Killer Cells, Natural/enzymology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL